Connectedness properties of the set where the iterates of an entire function are bounded
نویسندگان
چکیده
We investigate some connectedness properties of the set of points K(f) where the iterates of an entire function f are bounded. We describe a class of transcendental entire functions for which K(f) is totally disconnected if and only if each component of K(f) containing a critical point is aperiodic. Moreover we show that, for such functions, if K(f) is disconnected then it has uncountably many components. We give examples of functions for which K(f) is totally disconnected, and we use quasiconformal surgery to construct a function for which K(f) has a component with empty interior that is not a singleton.
منابع مشابه
The Open University ’ s repository of research publications and other research outputs Connectedness properties of the set where the iterates of an entire function are bounded
We investigate some connectedness properties of the set of points K(f) where the iterates of an entire function f are bounded. We describe a class of transcendental entire functions for which K(f) is totally disconnected if and only if each component of K(f) containing a critical point is aperiodic. Moreover we show that, for such functions, if K(f) is disconnected then it has uncountably many ...
متن کاملresearch outputs Connectedness properties of the set where the iterates
We investigate some connectedness properties of the set of points K(f) where the iterates of an entire function f are bounded. We describe a class of transcendental entire functions for which K(f) is totally disconnected if and only if each component of K(f) containing a critical point is aperiodic. Moreover we show that, for such functions, if K(f) is disconnected then it has uncountably many ...
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملA Certain Class of Character Module Homomorphisms on Normed Algebras
For two normed algebras $A$ and $B$ with the character space $bigtriangleup(B)neq emptyset$ and a left $B-$module $X,$ a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$ as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...
متن کاملSOME RESULTS OF CONTINUITY ?f
The dynamical behavior of a map on the unit interval has been the subject of much contemporary research. In this paper, we will consider the relation between the continuity of the map cof and cof for some positive integer k, where f is a continuous map from the unit interval to itself, and ?f is a function which takes any element of the unit interval to the set of all subsequential limits o...
متن کامل